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The thermophoresis of a spheroidally shaped aerosol particle at small relative temperature differences has
been considered with allowance for internal heat sources nonuniformly distributed in its volume.

Formulation of the Problem. We consider the steady-state motion of a solid aerosol particle of a spheroidal
shape (oblate spheroid) with velocity U in the negative direction of the z axis inside which nonuniformly distributed
internal heat sources of density qp act. It is assumed that the gas is at rest at infinity and a small constant temperature
gradient ∇ T is maintained with the use of external sources. The motion of the particle occurs at small relative tem-
perature differences in its vicinity, i.e., when (Ts − T∞)/T∞ << 1. When this condition is fulfilled, the thermal conduc-
tivity and the coefficients of dynamic and kinematic viscosity can be assumed to be constants, whereas the gas can be
considered as an incompressible medium. The particle size is much larger than the mean-free paths of the molecules
of the gas mixture; therefore, we will disregard Knudsen corrections [1, 2].

Description of the thermophoretic motion of the particles is carried out in the Stokes approximation in a
spheroidal coordinate system (ε, η, ϕ) with its origin at the center of the spheroid, i.e., the origin of a fixed coordinate
system in the instantaneous position of the center of the particle is selected. The curvilinear coordinates ε, η, ϕ are re-
lated to the Cartesian coordinates by the following relations [3]:

x = c sinh ε sin η cos ϕ ,   y = c sinh ε sin η sin ϕ ,   z = c cosh ε cos η , (1)

x = c cosh ε sin η cos ϕ ,   y = c cosh ε sin η sin ϕ ,   z = c sinh ε cos η , (2)

where we have c = √b2 − a2  in the case of a prolate spheroid (a < b, formula (1)) and c = √a2 − b2  in the case of an
oblate spheroid (a > b, formula (2)); a and b are the semiaxes of the spheroid. The position of the Cartesian coordinate
system is fixed relative to the particle so that the origin of coordinates is located at the center of the spheroid and the
z axis coincides with the axis of symmetry of the spheroid.

With the constraints considered above, the velocity, pressure, and temperature distribution are described by the
system of equations [4]

∇ Pg = µg∆Ug ,   div Ug = 0 , (3)

ρgcpg (Ug⋅∇)  Tg = λg∆Tg ,   ∆Tp = − qp
 ⁄ λp (4)

with boundary conditions

ε = ε0 ,   Uε = − 
cU cosh ε

Hε
 cos η ,   Uη = 

cU sinh ε
Hε

 sin η − Kt.s 
νg

Tg
 (∇ Tg⋅eη) ,   Hε = √cosh2 ε − sin2 η  ,

Tg = Tp ,   λg (∇ Tg⋅eε) = λp (∇ Tp⋅eε) ; (5)
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ε → ∞ ,   Ug → 0 ,   Tg → T∞ + ∇ T  c sinh ε cos η ,   Pg → P∞ ; (6)

ε → 0 ,   Tp ≠ ∞ . (7)

In boundary conditions (5) on the particle surface, we have allowed for: the slip condition for the tangential
components of the mass velocity, the equality of temperatures, and the continuity of the heat fluxes on the particle
surface. The particle surface corresponds to the coordinate surface with ε = ε0. Boundary conditions (6) hold at a large
distance from the particle (ε → ∞), whereas the finiteness of the physical quantities characterizing the particle for
ε → 0 is allowed for in (7).

Temperature Distribution in the Vicinity of the Particle. Determination of the Force and the Thermo-
phoresis Velocity. In the problem, in addition to the dimensionless Reynolds and Pe′clet numbers, there is another con-
trolled small parameter ξ = a∇ T  ⁄ T∞ << 1 characterizing the relative temperature difference on the particle size.
Therefore, we will seek the solution of boundary-value problem (3), (4) in the form of an expansion in powers of ξ.

To find the force acting on the particle and the thermophoresis velocity in the prescribed external field of the
temperature gradient it is necessary to know the velocity, pressure, and temperature distribution in the vicinity of the
spheroid. In solution of the problem, we restrict ourselves to corrections of first order of smallness in ξ. Leaving the
terms proportional to ξ in Eqs. (4) and solving the resulting systems of equations by the method of separation of vari-
ables, we finally obtain for the zero approximations (ξ = 0):

tg
(0)

 (λ) = 1 + γλ0 arccot λ , (8)

tp
(0)

 (λ) = D + 
λg

λp
 γλ0 arccot λ + ∫ 

λ0

λ

arccot λ f dλ − arccot λ ∫ 

λ0

λ

fdλ , (9)

where λ = sinh ε, λ0 = sinh ε0, and γ = ts − 1 is the dimensionless parameter; ts = Ts
 ⁄ T∞, and Ts is the average tem-

perature of the spheroid surface, determined as

Ts

T∞
 = 1 + 

1

4πλgcλ0T∞
 ∫ 
V

qpdV ;

D = 1 + 



1 − 

λg

λp




 γλ0 arccot λ0 ;   f = − 

c
2

2λpT∞
  ∫ 

−1

+1

 qp (λ2
 + x

2) dx ;   x = cos η .

(10)

In formula (10), we integrate over the entire volume of the particle, and for the first approximations (Dξ) we
have

tg
(1)

 (λ, x) = cos η 




cλ
a

 + Γc (λ arccot λ − 1) + ω 



A2 (arccot λ − 

λ
2

 arccot
2
 λ) +

+ 
A1

2
 (arccot λ − λ arccot

2
 λ)




  



 , (11)

tp
(1)

 (λ, x) = cos η 










Bcλ + 

3 (1 − λ arccot λ)

4πc
2λpT∞

 ∫ 

V

qizdV − λ ∫ 

λ0

λ

(λ arccot λ − 1) f1dλ +
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+ (λ arccot λ − 1) ∫ 

λ0

λ

λf1dλ









 . (12)

Here ω = Pr γλ0/(ac) and Pr is the Prandtl number.
The general solution of the Stokes equation in the oblate coordinate system has the following form (see, for

example, [3]):

Uε (ε, η) = 
U

c cosh εHε
 cos η 




λA2 + [λ − (1 + λ2) arccot λ] A1 + c

2
 (1 + λ2)




 , (13)

Uη (ε, η) = − 
U

cHε
 sin η 





A2

2
 + (1 − λ arccot λ) A1 + c

2λ



 , (14)

Pg (ε, η) = P∞ + c 
µgU

Hε
4  x (λ2

 + x
2) A2 . (15)

The integration constants Γ, B, A1, and A2 appearing in (11)–(15) are determined from the boundary condi-
tions on the spheroid surface (5). Integrating the stress tensor over the particle surface, we obtain the following general
expression for the force, which is additively made up of the viscous force of the medium Fµ and the force F(1):

F = Fµ + F
(1)

 , (16)

where

Fµ = − 8πµg
s
U 

c
2

β [λ0 + (1 − λ0
2) arccot λ0]

 ; (17)

F
(1)

 = − 8πµg
s
cKt.s  

νg
s

ts
 

λ0 − (1 + λ0
2) arccot λ0

β [λ0 + (1 − λ0
2) arccot λ0]

 
δ

(1 + λ0
2) ∆

 
∇ T

T∞

 ×

× 






1 − 

3a (λ0 arccot λ0 − 1)

4πc
3λgT∞λ0

 ∫ 

V

qpzdV + Pr 
1 + λ0

2

2
 λ0γ 

1 + λ0 arccot λ0 (2 − λ0 arccot λ0)

λ0 − (1 + λ0
2) arccot λ0







 ; (18)

β = 1 − 2Kt.s 
λ0

ts
 γ 

Pr

∆
 

δ

1 + λ0
2
 
λ0 − (1 + λ0

2) arccot λ0

λ0 + (1 − λ0
2) arccot λ0

 



1 − 




λ0 + 

1

2
 arccot λ0




 arccot λ0 −

− 
λ0 − (2 − λ0 arccot λ0) λ0

2
 arccot λ0

λ0 − (1 + λ0
2) arccot λ0







 ;   ∆ = (1 − δ) arccot λ0 + δ 

λ0

1 + λ0
2
 − 

1

λ0

 ;   δ = 
λg

s

λp
s
 .

In the general case, the force F(1) consists of the sum of three forces stemming from respectively: a purely
thermophoretic force (first term), a force proportional to the dipole moment of the density of the heat fluxes nonuni-
formly distributed in the particle’s volume (second term), and a force due to the influence of the motion of the me-
dium, i.e., allowing for the convective terms in the heat-conduction equation (third term).
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Equating F to zero, we have the following expression for the velocity of motion of the solid spheroidal par-
ticle in the prescribed external field of the temperature gradient:

Ut.ph = − 
b

a
 Kt.s 

νg
s

ts
 δ 

1 − (λ0 + 1 ⁄ λ0) arccot λ0

√ 1 + λ0
2 




(1 − δ) arccot λ0 + δ 

λ0

1 + λ0
2
 − 

1

λ0





 



1 − 

3a

4πc
3λgT∞

 



arccot λ0 − 

1

λ0




 ×

× ∫ 
V

qpzdV + Pr 
1 + λ0

2

2
 λ0γ 

1 + λ0 arccot λ0 (2 − λ0 arccot λ0)

λ0 − (1 + λ0
2) arccot λ0







 
∇ T

T∞

 . (19)

To obtain the thermophoresis velocity for a prolate spheroid we must replace λ by iλ and c by −ic (i is the
imaginary unit) in (19).

Analysis of the Results Obtained. If the influence of the medium’s motion and of the internal heat sources
is disregarded, expression (19) becomes an expression (coincident with formula (9) in [5]) for a pure velocity of ther-
mophoresis of the spheroidal particle.

To evaluate the contribution of internal heat release to the velocity of thermophoresis of the spheroidal parti-
cle we must specify the nature of the heat sources nonuniformly distributed in its volume. We consider as an example
the simplest case where the particle absorbs radiation as a black body. The radiation is absorbed in a thin layer of
thickness δε << ε0 adjacent to the heated part of the particle surface. In this case the density of the heat sources inside
the layer of thickness δε is equal to [6]

qp (ε, η) = 











− 
cosh ε cos η

c (cosh
2
 ε − sin

2
 η) δε

 I0 ,

0 ,

   

π
2

 ≤ η ≤ π ,   ε0 − δε ≤ ε ≤ ε0 ;

0 ≤ η ≤ 
π
2

 . (20)

With account for (20) the expression for the thermophoresis velocity takes the form

Ut.ph
∗

 = Kt.sνg
sδft.ph

∗
 
 ∇ T

T∞
 , (21)

ft.ph
∗

 = − 
b

a
 

1 − (λ0 + 1 ⁄ λ0) arccot λ0

√ 1 + λ0
2  tg

s
 



(1 − δ) arccot λ0 + δ 

λ0

1 + λ0
2
 − 

1

λ0





 









1 + 

λ0
2
a

2λgT∞

 I0 



1 + 

1

λ0
2




 ×

× 



λ0 arccot λ0 − 1 + 

Pr

4
 √ 1 + λ0

2  
1 − λ0 arccot λ0 (2 − λ0 arccot λ0)

λ0 − (1 + λ0
2) arccot λ0




 









 ,

ft.ph
w

 = − 
b

a
 

1 − (λ0 + 1 ⁄ λ0) arccot λ0

√ 1 + λ0
2 tg

s
 



(1 − δ) arccot λ0 + δ 

λ0

1 + λ0
2 − 

1

λ0





 .

To illustrate the contribution of the shape factor (ratio of the semiaxes of the spheroid) and of the influence
of the medium’s motion and internal heat release on the thermophoresis velocity (21) Fig. 1 gives the curves relating
the values f = ft.ph

∗ /ft.ph
w  T∞=300K to the intensity of incident radiation for borated-graphite particles (λp

s = 55 W/(m⋅deg)
with spherical (curve 1) and spheroidal (curve 2) shapes of the surface with an equatorial radius of a = 35 µm for
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different ratios of the spheroid semiaxes: b/a = 0.2 (see Fig. 1a) and b/a = 0.5 (see Fig. 1b) (the particles are sus-
pended in air at T∞ = 300 K and Pg = 105 Pa). A numerical analysis has shown that, when the ratio of the semiaxes
is fixed, the total contribution of the medium’s motion and the internal heat release leads to a monotonic decrease in
the thermophoresis velocity (see Fig. 1) with increase in the incident-radiation intensity I0, and this decrease substan-
tially depends on the equatorial radius of the spheroid a.

NOTATION

a and b, semiaxes of the spheroid; cpg, heat capacity of the gas; eη and eε, unit vectors of the spheroidal co-
ordinate system; Fµ, viscous force of the medium; I0, incident-radiation intensity; Kt.s, coefficient of thermal slip; qp,
density distribution of the heat sources inside the particle; Pr, Prandtl number; Pg, pressure of the gas; Tg and Tp, tem-
peratures of the gas and the particle respectively; Ts, average temperature of the spheroid surface; T∞ and P∞, tempera-
ture and pressure of the gas at a large distance from the particle; Uε and Uη, components of the mass velocity of the
gas Ug; U =  U , velocity; V, volume of the particle; λg and λp, thermal conductivities of the gas and the particle
respectively; νg, µg, and ρg, kinematic and dynamic viscosities and density of the gaseous medium; ξ = a∇ T /T∞,
small parameter characterizing the relative temperature difference on the particle size; ε, η, ϕ, spheroidal coordinate
system. Subscripts and superscripts: g, gas; 0, values of the quantities on the particle surface; p, particle; s, quantities
at the average temperature of the spheroid surface; ∞, values of the physical quantities away from the particle (at in-
finity); w, quantities without allowance for internal heat release and the medium’s motion; ε and η, components of the
physical quantities in the spheroidal coordinate systems; t.s, thermal slip; t.ph, thermal phoresis (thermophoresis).
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Fig. 1. Function f vs. incident-radiation intensity for the semiaxes ratio b/a =
0.2 (a) and b/a = 0.5 (b). I0, W/cm2.
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